Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Breathe (Sheff) ; 19(1): 230035, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-20234453

ABSTRACT

Accumulated evidence supports the efficacy of noninvasive respiratory support therapies in coronavirus disease 2019 (COVID-19)-related acute hypoxaemic respiratory failure, alleviating admissions to intensive care units. Noninvasive respiratory support strategies, including high-flow oxygen therapy, continuous positive airway pressure via mask or helmet and noninvasive ventilation, can be alternatives that may avoid the need for invasive ventilation. Alternating different noninvasive respiratory support therapies and introducing complementary interventions, like self-proning, may improve outcomes. Proper monitoring is warranted to ensure the efficacy of the techniques and to avoid complications while supporting transfer to the intensive care unit. This article reviews the latest evidence on noninvasive respiratory support therapies in COVID-19-related acute hypoxaemic respiratory failure.

2.
J Clin Med ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2293721

ABSTRACT

High-flow nasal therapy (HFNT) was introduced into clinical practice in the early 2000s as a form of noninvasive respiratory support (NIRS) [...].

4.
Qeios ; 2022.
Article in English | EuropePMC | ID: covidwho-2255652

ABSTRACT

The aim of this unblinded parallel-group randomized multicenter clinical trial is to compare the clinical effectiveness of high flow nasal therapy (HFNT) with conventional oxygen therapy (COT) in patients with confirmed COVID-19 related acute hypoxemic respiratory failure. ClinicalTrials.gov Identifier: NCT04655638

5.
Thorax ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-2255794

ABSTRACT

RATIONALE: In patients with COVID-19 pneumonia and mild hypoxaemia, the clinical benefit of high-flow nasal oxygen (HFNO) remains unclear. We aimed to examine whether HFNO compared with conventional oxygen therapy (COT) could prevent escalation of respiratory support in this patient population. METHODS: In this multicentre, randomised, parallel-group, open-label trial, patients with COVID-19 pneumonia and peripheral oxygen saturation (SpO2) ≤92% who required oxygen therapy were randomised to HFNO or COT. The primary outcome was the rate of escalation of respiratory support (ie, continuous positive airway pressure, non-invasive ventilation or invasive mechanical ventilation) within 28 days. Among secondary outcomes, clinical recovery was defined as the improvement in oxygenation (SpO2 ≥96% with fractional inspired oxygen (FiO2) ≤30% or partial pressure of arterial carbon dioxide/FiO2 ratio >300 mm Hg). RESULTS: Among 364 randomised patients, 55 (30.3%) of 181 patients assigned to HFNO and 70 (38.6%) of 181 patients assigned to COT underwent escalation of respiratory support, with no significant difference between groups (absolute risk difference -8.2% (95% CI -18% to +1.4%); RR 0.79 (95% CI 0.59 to 1.05); p=0.09). There was no significant difference in clinical recovery (69.1% vs 60.8%; absolute risk difference 8.2% (95% CI -1.5% to +18.0%), RR 1.14 (95% CI 0.98 to 1.32)), intensive care unit admission (7.7% vs 11.0%, absolute risk difference -3.3% (95% CI -9.3% to +2.6%)), and in hospital length of stay (11 (IQR 8-17) vs 11 (IQR 7-20) days, absolute risk difference -1.0% (95% CI -3.1% to +1.1%)). CONCLUSIONS: Among patients with COVID-19 pneumonia and mild hypoxaemia, the use of HFNO did not significantly reduce the likelihood of escalation of respiratory support. TRIAL REGISTRATION NUMBER: NCT04655638.

6.
Life (Basel) ; 12(10)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2071611

ABSTRACT

We read the article "Application of High-Flow Nasal Cannula in COVID-19: A Narrative Review" by Liu and colleagues [...].

7.
Biomedicines ; 9(12)2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1785519

ABSTRACT

BACKGROUND: The wide availability of monoclonal antibodies for the add-on therapy of severe asthma currently allows for the personalization of biologic treatment by selecting the most appropriate drug for each patient. However, subjects with overlapping allergic and eosinophilic phenotypes can be often eligible to more than one biologic, so that the first pharmacologic choice can be quite challenging for clinicians. Within such a context, the aim of our real-life investigation was to verify whether allergic patients with severe eosinophilic asthma, not adequately controlled by an initial biologic treatment with omalizumab, could experience better therapeutic results from a pharmacologic shift to benralizumab. PATIENTS AND METHODS: Twenty allergic patients with severe eosinophilic asthma, unsuccessfully treated with omalizumab and then switched to benralizumab, were assessed for at least 1 year in order to detect eventual changes in disease exacerbations, symptom control, oral corticosteroid intake, lung function, and blood eosinophils. RESULTS: In comparison to the previous omalizumab therapy, after 1 year of treatment with benralizumab our patients experienced significant improvements in asthma exacerbation rate (p < 0.01), rescue medication need (p < 0.001), asthma control test (ACT) score (p < 0.05), forced expiratory volume in the first second (FEV1) (p < 0.05), and blood eosinophil count (p < 0.0001). Furthermore, with respect to the end of omalizumab treatment, the score of sino-nasal outcome test-22 (SNOT-22) significantly decreased after therapy with benralizumab (p < 0.05). CONCLUSION: The results of this real-life study suggest that the pharmacologic shift from omalizumab to benralizumab can be a valuable therapeutic approach for allergic patients with severe eosinophilic asthma, not adequately controlled by anti-IgE treatment.

8.
9.
Respir Care ; 67(2): 227-240, 2022 02.
Article in English | MEDLINE | ID: covidwho-1410802

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, noninvasive respiratory support has played a central role in managing patients affected by moderate-to-severe acute hypoxemic respiratory failure, despite inadequate scientific evidence to support its usage. High-flow nasal cannula (HFNC) treatment has gained popularity because of its effectiveness in delivering a high fraction of humidified oxygen, which improves ventilatory efficiency and the respiratory pattern, as well as its reported high tolerability, ease of use, and application outside of ICUs. Nevertheless, the risk of infection transmission to health-care workers has raised some concerns about its use in the first wave of the pandemic outbreak, with controversial recommendations provided by different scientific societies. This narrative review provides an overview of the recent evidence on the physiologic rationale, risks, and benefits of using HFNC instead of conventional oxygen therapy and other types of noninvasive respiratory support devices, such as continuous positive airway pressure and noninvasive ventilation in patients affected by COVID-19 pneumonia with associated acute hypoxemic respiratory failure. It also summarizes the available evidence with regard to the clinical use of HFNC during the current pandemic and its reported outcomes, and highlights the risks of bioaerosol dispersion associated with HFNC use.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Cannula , Humans , Oxygen Inhalation Therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
10.
Sci Rep ; 11(1): 5559, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125054

ABSTRACT

During the COVID-19 pandemic, the need for noninvasive respiratory support devices has dramatically increased, sometimes exceeding hospital capacity. The full-face Decathlon snorkeling mask, EasyBreath (EB mask), has been adapted to deliver continuous positive airway pressure (CPAP) as an emergency respiratory interface. We aimed to assess the performance of this modified EB mask and to test its use during different gas mixture supplies. CPAP set at 5, 10, and 15 cmH2O was delivered to 10 healthy volunteers with a high-flow system generator set at 40, 80, and 120 L min-1 and with a turbine-driven ventilator during both spontaneous and loaded (resistor) breathing. Inspiratory CO2 partial pressure (PiCO2), pressure inside the mask, breathing pattern and electrical activity of the diaphragm (EAdi) were measured at all combinations of CPAP/flows delivered, with and without the resistor. Using the high-flow generator set at 40 L min-1, the PiCO2 significantly increased and the system was unable to maintain the target CPAP of 10 and 15 cmH2O and a stable pressure within the respiratory cycle; conversely, the turbine-driven ventilator did. EAdi significantly increased with flow rates of 40 and 80 L min-1 but not at 120 L min-1 and with the turbine-driven ventilator. EB mask can be safely used to deliver CPAP only under strict constraints, using either a high-flow generator at a flow rate greater than 80 L min-1, or a high-performance turbine-driven ventilator.


Subject(s)
COVID-19/therapy , Continuous Positive Airway Pressure/instrumentation , Respiration, Artificial/instrumentation , Adult , Continuous Positive Airway Pressure/methods , Diving , Female , Healthy Volunteers , Humans , Male , Masks , Pandemics , Respiration , Respiration, Artificial/methods , SARS-CoV-2/pathogenicity , Ventilators, Mechanical
13.
Minerva Anestesiol ; 86(11): 1190-1204, 2020 11.
Article in English | MEDLINE | ID: covidwho-695494

ABSTRACT

INTRODUCTION: Noninvasive respiratory support (NRS) such as noninvasive ventilation (NIV) and high flow nasal therapy (HFNT) have been used in the treatment of acute hypoxemic respiratory failure (AHRF) related to the coronavirus disease (COVID-19) and other viral infections. However, there is a lack of consensus in favor of or against NRS use due to the risks of worsening hypoxemia, intubation delay, and aerosols environmental contamination associated with the use of these tools. We aimed to summarize the evidence on the use of NRS in adult patients with COVID-19 and other viral pneumonia (i.e. H1N1, SARS, MERS) and AHRF. We also searched for studies evaluating the risk of aerosolization/contamination with these tools. EVIDENCE ACQUISITION: We searched MEDLINE, PubMed EMBASE and two major preprint servers (biorXiv and medRxiv) from inception to April 14, 2020, for studies on the use of respiratory support in AHRF and viral pneumonia. EVIDENCE SYNTHESIS: The search identified 4086 records and we found only one randomized controlled trial out of 58 studies included, with great variabilities in support utilization and failure rates. Fifteen studies explored the issue of aerosolization/contamination showing a high risk of airborne transmission via droplets generation during the use of these modalities. CONCLUSIONS: Use of NRS and treatment failure in the context of COVID-19 and viral infection associated-AHRF, varied widely. Dispersion of exhaled air is different depending on the type of respiratory therapies and interfaces. Data from randomized controlled trials are lacking.


Subject(s)
COVID-19 , Coronavirus , Influenza A Virus, H1N1 Subtype , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Humans , Pandemics , Respiratory Insufficiency/therapy , SARS-CoV-2
14.
Pulmonology ; 27(5): 438-447, 2021.
Article in English | MEDLINE | ID: covidwho-693888

ABSTRACT

BACKGROUND: As the Coronavirus disease 2019 (COVID-19) is spreading worldwide, countries are dealing with different phases of the pandemic. Lately, scientific evidence has been growing about the measures for reopening respiratory outpatient services during the COVID-19 pandemic. We aim to summarize the key differences and similarities among recommendations by different national and international organizations. METHODS: We searched on Google and Pubmed for recently published National and International Recommendations/Guidelines/Position Papers from professional organizations and societies, offering a guidance to physicians on how to safely perform pulmonary function testing during COVID-19 pandemic. We also searched for spirometry manufacturers' operational indications. RESULTS: Indications on spirometry were released by the Chinese Task force, the American Thoracic Society, the European Respiratory Society, the Thoracic Society of Australia and New Zealand, the Société de Pneumologie de Langue Française, the Spanish Societies (Sociedad Espanola de Neumologia y Cirugia Toracica, Sociedad Espanola de Alergologia e Inmunologia Clinica, Asociacion de Especialistas en Enfermeria del trabajo, Asociacion de Enfermeria Comunitaria), the Sociedade Portuguesa de Pneumologia, the British Thoracic Society/Association for Respiratory Technology & Physiology, the Irish Thoracic Society, the Sociedad Uruguaya de Neumologia, the Italian Thoracic Society and the Italian Respiratory Society, Cleveland Clinic and Nebraska Medical Center. Detailed technical recommendations were found on manufacturers' websites. We found several similarities across available guidelines for safely resuming pulmonary function services, as well as differences in criteria for selecting eligible patients for which spirometry is deemed essential and advice which was not homogenous on room ventilation precautions. CONCLUSIONS: This study shows a synthesis of national/international guidelines allowing practicing physicians to adapt and shape the way to organize their outpatient services locally. There is generally good agreement on the importance of limiting pulmonary function testing to selected cases only. However, significant differences concerning the subsets of candidate patients, as well as on the management of adequate room ventilation, were observed.


Subject(s)
COVID-19/physiopathology , Manufacturing Industry/organization & administration , Respiratory Function Tests/methods , Spirometry/methods , Ambulatory Care Facilities/organization & administration , Ambulatory Care Facilities/standards , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Clinical Decision-Making/ethics , Consensus , Disease Outbreaks , Equipment Design/standards , Equipment and Supplies Utilization/standards , Guidelines as Topic/standards , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Manufacturing Industry/statistics & numerical data , Pandemics , Physicians , Respiratory Function Tests/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Safety , Spirometry/standards
16.
Am J Infect Control ; 48(9): 1087-1089, 2020 09.
Article in English | MEDLINE | ID: covidwho-627682

ABSTRACT

COVID-19 pandemic turned the entire health-care system organization upside-down, suspending elective activities and outpatient services. In Italy, we are entering a second phase of the pandemic and several strategies have been developed to "re-open" the country, some businesses, and also health care outpatient activities. This manuscript describes the experience of a Southern Italy Respiratory Unit for safely resuming outpatient respiratory services and preventing COVID-19 transmission.


Subject(s)
Ambulatory Care/methods , Betacoronavirus , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Therapy/methods , COVID-19 , Coronavirus Infections/transmission , Humans , Italy , Pneumonia, Viral/transmission , Respiratory Function Tests/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL